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Abstract—The crack -microcrack array interaction problem. in terms of the statistical distribution
of microcrack fength. density and ortentation, is formulated tn this paper. The formulation is based
on Green's function of a dislocation dipole placed in the vicinity of the main crack tip. The energy
release rate (ERR) associated with the microcrack array evolution is also formulated in terms of
the distribution and their gradients. The etfect of the microcrack density. length and orientation on
stress intensity factors and ERRs are illustrated on examples.

L. INTRODUCTION

A damage zone (DZ) usually accompanies slow crack propagation under fatigue and creep
conditions. In this paper we consider a special case of a damage zone consisting of an array
of localized discontinuitics such as microcracks or crazes. Figure U illustrates an array of
crazes formed in the vicinity of a fatigue crack in an amorphous polymer. Statistical
distributions of microcrack densitics, orientation and length appear to be the most appro-
priate characterizations of such damage (Chudnovsky and Wu, 1991 ; Huang ¢t «l., in
press). A hypothesis of a simitarity of DZ, i.c. self=similarity of the statistical distributions,
in the process of the DZ evolution has been first proposed theoretically (Chudnovsky, 1984)
and then supported by experimental examinations (Botsis and Kunin, 1987 ; Zhang, 1990).
The sclf-similarity hypothesis (SSH) yicelds a decomposition of the DZ propagation into
clementary movements such as translation, rotation and deformation. The corresponding
driving forces, in accordance with the general framework of the thermodynamics of irre-
versible processes, are represented by linear functions of the energy release rates (ERR)
assoctiated with the elementary movements (Chudnovsky, 1984). This motivates the present
study of crack-microcrack array interaction and an evaluation of ERRs resulting from the
array translation, expansion elc.

Three approaches have been recently advanced to evaluate clastic fields associated with
the presence of microcrack array in the vicinity of the main crack tip. [n the first approach
the microcrack array 1s modeled by an inclusion of an cffective clastic medium. This well-
posed boundary valuc problem of a crack partially penctrating into a “softer inclusion™ has
been addressed by various authors (Steiff, 1987 Ortiz, 1987 ; Huchinson, 1987 ; Wu, 1988).
However, there are various shortcomings in this approach from the physics standpoint.
First of all it does not account for local fluctuations of microcrack density and length,
which is of primary importance for the fracture process. Sccondly, the relation between the
statistics of the microcrack array in the vicinity of the main crack and an cffective elastic
constant is, in general, unknown. Determination of such a relation is equivalent to solving
the crack-microcrack interaction problem. In addition to that the distribution of micro-
cracks in the array is usually a hcterogencous one. To reflect that, an equivalent elastic
inclusion should be nonhomogencous and anisotropic. It leads to certain computational
difficulties.

Another approach to crack-microcrack interaction is based on a detailed description
of the location, size and oricntation of every microcrack in every particular realization of
the microcrack array (Chudnovsky and Kachanov, 1983 : Horii and Nemat-Nasser, 1983 :
Kachanov. 1985; Rose, 1986: Rubinstein, 1986: Chudnovsky et al.. 1987). Apparently,
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this leads to a computational limitation and the method becomes impractical for an array
similar to the one shown in Fig. 1.

In the third approach the microcrack array is characterized by statistical distributions
of microcrack densities, sizes and orientation. It leads to evaluation of integral (average)
parameters associated with the microcrack array (Chudnovsky and Qoezdou. 1988:
Chudnovsky and Wu, 1990 ; Chudnovsky and Wu, 1991 ; Wu and Chudnovsky. 1990). The
present paper {ollows the third approach and is a continuation of our previous work.

The statistical distribution of the microcrack length as well as the distance between the
microcracks, their locations and orientations with respect to the main crack are essential
for the interaction problem. We employ a new characterization of a random array of
microcracks in terms of distributions of the size. orientation and density of microcracks
proposed by Chudnovsky and Wu (1991) and characterize the damage D(x) at a
given point x by the microcrack density po(x). angular distribution (8 x) and the
microcrack length distribution p(f/x. #). The microcrack density po(x) is defined as 1.2 of
crack surfaces per unit volume and has dimension m*/m*. Apparently, it is different from
the dimensionless “microcrack density™ ¢ conventionally used in damage mechanics. A
corresponding quantity in our case ts microcrack concentration pl. The relationship between
pf and the effective elastic constants for “dilute”™ microcrack concentration in the 2-D case
can be casily found [Wu and Chudnovsky, (1990)].

Two issucs are addressed in this paper. The first 15 a formulation of the crack-
microcrack array interaction problem in terms of the above distributions and its solution.
It is bused on Green's function of a dislocation dipole placed in the vicinity of the main
crack tip given by Ballarini and Denda (1988). The second is an evaluation of ERRs. The
effect of the distributions of microcrack density, length and orientation on the stress intensity
factor (S1F) and the ERRSs due to a microcrack array is illustrated in examples.

2 ELASTIC INTERACTION OF A CRACK WITH A RANDOM ARRAY OF MICROCRACKS

2.1 Formudation of the problem

The lincar clastic interaction of a crack microcrack array can be obtained by the
superposition method based on Green’s function G for a dislocation dipole interacting with
a crack. Microcrack opening displacement is conventionally represented by a continuous
distribution b(&) of dislocation dipoles. Thus the stress, displacement and SIF of the main
crack due to a particular microcrack (/;) can be expressed as:

u(x) = f b(H)D(x.§) dE, o(x) = ﬁ b(OF(x.5)d¢, K =j b(E)Gue(S)de. (D)

o

where the influence functions ®, F and Gy are known functions, obtained by simple
transformations of Green's function G {Wu and Chudnovsky, 1991). Then by means of
the superposition principle, the stress, displacement and SIF due to a microcrack array can
be obtained by integrating (1) over the domain V' occupied by the microcrack array with
microcrack density p as a weight function

u(x) = ﬁ pEBED(x,§) d&, o' (x) = ﬁ pEDEIF(x, §) d¢

K* = J. PED(EGie(8) dé. (2)

The integrals in (2) are well defined if the microcrack concentration pf tends to zero faster
thanr'®:

Lim r~ (1)) = 0. 3)

We consider below the case when this condition is satisfied.
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Fig. 1. The optical micrograph displaying the damage zone (craze array) near the crack tip in an
amorphous polymer.
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The elastic fields in a vicinity of the main crack surrounded by a process zone can be
expressed as a sum:

u=u+ut, e=d"+06*, K=K'+K* 4)

where v, ¢° and K® are the diplacement, stress and SIF due to the main crack only under
the remote loading ¢°, respectively. Thus the traction-free condition on the main crack is
met since both terms in (4) sauisfy it, the remote loading boundary condition is satisfied by
the first terms in (4). The remaining boundary conditions, i.e. the traction-free faces of the
microcracks, are met by solving a system of corresponding singular integral equations.

The equations are written for every microcrack embedded into an effective stress field.
The latter is defined as follows. Let us consider the effective stress o' along the ith
microcrack line generated by the main crack and the rest of the microcracks in the absence
of the ith microcrack :

M
o (x) =" () + 2 | BUQF(x,$) ds. &)

R

Then applying —o“"(x)-n(x) on ith microcrack faces, we satisfy the traction free
requirement for the ith microcrack. Applying this treatment to every microcrack, one
obtains the system of integral equations. For simplicity, we assume ¢°"(x) being constant
on the microcrack scale. Then the relation between the effective stress and the microcrack
opening displacement is well known:

[
b= nEo""'n. (6)

Then, combining (5) and (6), we obtain a system of integral equation with respect to the
unknown b functions. Solution of these equations leads to the solution of the interaction
problem.

Substituting the summation in (5) by the integration over V" with weight function p(x)
and employing a conventional regularization of the singular integrals in (2) (Chudnovsky
et al., 1987), we rewrite eqns (5) as:

o*"(x) = a°(x) +J; p(E)[b(5) —b(x)]F(x, §) d¢. O

Finally, combining eqns (6) and (7), we obtain the following equation to determine
the unknown microcrack opening displacement vector b(x):

nl(x) rl(x)

b(x) = —p—a" a+ — { J; P(ﬁ){b(E)-'b(x)]F(x,C)d«i}'m ®

Apparently from (8) the components b, of an average vector opening b(x) at point x
can be viewed as the sum of the opening due to the main crack with remote load and due
to the microcrack array in the presence of the main crack. The integral in (8) can be
discreted into summation by employing the same method as Chudnovsky and Wu (1991).
Thus, (8) can be reduced into two algebraic equations in terms of the components of
microcrack opening displacement b, and b,

AuB +4,B, =F,
AnBi+453:8, = F,, ®

where B, and B, are the column matrices consisting of the values of microcrack opening b
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at points of discretization. Matrix 4, and F; are known functions of the microcrack density.
length distribution and the elastic properties of the undamaged material. Equation (9), in
principle, can be solved by a numerical technique. However, the singularity of effective
stress near the crack tip creates an obstacle for the computation. To overcome this problem.
we decompose the effective stress ¢ into singular and regular components :

efl

o*(x) = @)+ (x). (10)

2nr

The form of the singular part of the effective stress is based on the analytical solution
with unknown K'. The regular part of the effective stress is obtained numerically. If the
microcrack orientation is statistically isotropic at every point of the active zone, the effective
stress singularity is expected to be the same as the conventional singularity in an isotropic
material. For an anisotropic statistics i.¢. for a microcrack array with a dominant orien-
tation, the singularity of the stress field is expected to resemble that in a medium with a
corresponding anisotropy. Then, the order of singularity is still the same (' °). but the
angular distribution of stress ¢(#) will depend on the particular anisotropy.

Knowing the b(x) field, the SIF K", the elastic fields u(x) and a(x) can be radially
reconstructed by means of (2) and (4).

2.2, Crack-microcrack array interaction

Example 1. In this example we compare the SIF from our scheme with that obtained
by modeling a microcrack array by an clastic inclusion with isotropic effective elastic propertics.
A circular shape damage zone and the corresponding inclusion are considered. The clastic
properties of the inclusion are chosen as effective propertics of an clastic medium perforated
by a microcrack array with constant microcrack concentration (pl = constant). For com-
putational purposes we select the ratio of the radius of damage zone and the main crack
fength R/L = 0.1. All of the microcracks are parallel to the main crack, so the singular part
of the resulting effective stress field is similar to that for an orthotropic material where the
orthotropic property comes from the distribution of microcracks (Wu and Chudnovsky.,
1990). A low microcrack density case, the range 0 < p/ < 0.2, is considered, to examine the
effect of a microcrack array on the SIF. It should be noted that the above microcrack
concentration is different from commonly used microcrack densitics £ (Huchinson, 1987) ;
here the relation between the effective elastic propertics and the microcrack concentration
is taken from Wu and Chudnovsky (1990) for the two-dimensional case. Considering
eqn (2), the effective SIF can be expressed as follows :

K = K"+ K* = K"+£ Pb(E)Giir (§) dE. (th

The dependence of SIF on microcrack concentration pl is shown in Fig. 2 by solid
line. The dotted line represents the SIF of Huchinson (1987) whose result given in terms of
the ratio of the inttial and effective Young's modulus of material has been reformulated in
terms of the microcrack concentration. It should be emphasized that the Huchinson (1987)
result is obtained for an isotropic inclusion which can be considered as a mode!l of an
isotropically distributed microcrack array. For the case when all microcracks are parallel
to the main crack, our solution should be compared with an anisotropic inclusion problem.
However, to our knowledge, the SIF for a crack partially penetrating an anisotropic
inclusion is not known, therefore we compare our results with the closest available solution.
It is expected that shielding of a parallel microcrack array is higher than that of randomly
distributed microcracks, i.e. K" of our solution is smaller than K" given by Huchinson
(1987).

The main advantage of the method described above is that it can deal with crack-
damage interaction equally well for uniform and nonuniform distributions of microcracks.
As soon as the microcrack density p(x) and the microcrack length distribution /(x) are
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Fig. 2. The dependence of Ki" on the microcrack concentration pl.

given (e.g. measured by experimental means), the interaction problem can be solved using
the same numerical procedure as above. This statement is illustrated in the next example.

Example 2. Let us consider a specimen of the same geometry and loading condition
as in an experiment reported by Botsis (1988) (an SEN specimen of an amorphous polymer
with Young's modulus E = 2.2 Gpa, Poisson’s ratio v = 0.3, applied load ¢,; = 16 Mpa).
The evolution of the damage zone was monitored by a videorecording system attached to
an optical microscope. It should be noticed that the damage reported by Botsis (1988)
consists of crazes. In our example the crazes are substituted by microcracks. The calculation
is performed for the microcrack array whose density coincides with the observed cruze
density, and the length distribution resembles that of crazes.

The microcrack density p,(x) employed is shown in Fig. 3a. The distribution of
mathematical expectation of microcrack length is chosen as an extrapolation of the per-
ipheral craze length distribution :

I(x) = 0.06 (“'!> +0.15 (l%> ifx, >0
L, w

Ax) = 0.15 (f?) ifx, <0, (12)

where /, and w arc the length and half width of the active zone respectively. Using the
numerical procedure as described above the effective stress field is constructed for such a
microcrack array. The results of numerical computation for « = 2 are exemplified in Fig.
3b, which displays the %% component of the effective stress field. The other component of
effective stress as well as the microcrack opening distribution are reported in Chudnovsky
and Wu (1991). The effective SIF K57 in this case is K" = 0.88 K. where K stands for
the SIF of the main crack with the absence of the damage zone.

3. EVALUATION OF ENERGY RELEASE RATES

An elegant approach of evaluating the elastic energy changes due to initiation and
growth of defects was outlined by Eshelby (1956, 1975). Following his approach one can
express the energy release associated with the process zone translation, expansion etc. in
terms of Eshelby tensor P. For example, the ERR J, due to “translation™ of the damage
zone can be written as:

Je = J;ajf’/q dVi Py =fo;—0u. (13
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The Contours of Equal Level of Microcrack Density
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Fig. 3. (a) The contours of equal level of microcrack density po(x) (mm?/mm’) in the active zone.

The dot lines correspond to the intermediate of p,(x). (b} The contour of the equal value of effective
a3 distribution normalized by %, in the dumage zone for 2 = 2.

Here V is the domain occupied by the damage zone and f is the strain energy density. To
evaluate (13) one needs to know the elastic ficlds o and u of the interaction problem
discussed in the previous section.

Below we consider only the energy release associated with transtation of the damage
zone. Let us decompose the DZ into N, x N, clementary cells (see Fig. 4). Then the integral
over V in (13) can be rewritten as:

Moo N
Jy = Z ’ ¢;Py, dv, (14)

1=t fw
where V,; is the volume of the elementary cell. Since ¢,P,; = 0 within a homogeneous

domain, the area integral in (14) can be converted into a path integral by means of Gauss
Theorem:

J D,P,,-deJ‘ P, dr, (15)
Vg F”,
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Fig. 4. The schematic representation of the damage zone and the subdivision of it into a set of
elementary cells, and the paths of integration within an elementary cell.

where [; is the total boundary of the elementary cell ¥,4. Iy consists of the surfaces 55
of microcracks penetrating the elementary cell, the boundaries 'y between V5, and the
neighboring cells and a part T3 of external boundary 8V when the elementary cell Vi, is
one of the extreme peripheral cells of the active zone. When the summation in (14) is
performed the integrals over Iy cancel each other since there are always two opposite
directions of integration. The sum of the integral over I'f) results in the integral over the
boundary of the active zone V. The integrals over traction-free rectilinear microcrack
surfaces are vanishing everywhere except the microcrack tips. There are two types of these
integral paths, i.e. T'* and [~ (sce Fig. 4). The integral in the RHS of (15) over I'* and
" represent the energy release rates G 7 and G| respectively. For small microcrack density
one may cmploy a piccewise constant approximation of o on the scale of microcrack
length £ It results tn the following expression for ERR

Gi=+ g [(no*"n)* + (16""n)?} (16)

with + and — corresponding to the I'* and [, respectively. In the total sum GT and G7
balance cach other except when: (a) there is a balance in numbers of the “left” (~)
and Tright” (4 ) microcrack tips (see Fig. 4), and (b) there is a difference in the mathematical
expectation of the microcrack length on the left and right size of the elementary cell
under consideration. The first 15 ussoctated with the gradient of the microcrack density p
and the sccond with the gradient of the mathematical expectation of crack length /)
crossing a given point, The summuation in (14) in the limit of N, and N approaching infinity
gives the final expression of ERR due to translation of the damage zone:

J, = J‘ P, dr——j Zcos Ol(n-6"" "0y +(z- 6" - n)*]{{(cos 0 &, p+sin 0 &1p)
1 12

Al

+p(cos 00, {+sin 0 8.0 dv  (17a)

where @ is the average orientation of the microcracks.

Counsidering a high craze density case, we utilize the solution (Tada, [973) for a craze
in a thin strip of width /1 = 1/p instead of piecewisc constant approximation of ¢*". The
boundary condition is related to the craze formation stress o' which is a material parameter.
Then the ERR due to translation of the damage zone can be expressed as:

cos w2 E s .
Ji=1 Pyndl— —;E (n-g'n)"+ a(z'c"n}' {cos @l p+sinfd.pyde. (17b)
N ¥
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We have performed the computation of (17b) for the craze array reported by Botsis
(1988}, The total ERR JI consists two parts. one path integral J,; and one volume integral
o

J| = j|['+J|[ = 0.866‘1)+0.54G|I] (lg)

where G ts the ERR of the main crack with no damage zone (GV = (K{}*'E). The volume
integral depends on the craze formation stress ¢ which is 1.6a” in above example.

4. SUMMARY

{1) The interaction between a main crack and a surrounding microcrack array is
formulated in terms of the distributions of the microcrack density and the mathematical
expectation of microcrack length. The formulation is based on the analytical solution of
the interaction between a crack and a dislocation dipole. The approach s tllustrated by a
spectal case of a circular dumage zone with a constant microcrack concentration and all
microcracks being parallel to the main crack. The shielding effect of the microcrack array
in this case s compared with that of an elastic inclusion. It is shown that an isotropic elastic
inclusion model underestimates the shielding.

(2) In the second example a more realistic microcrack array configuration is considered.
In this case the effective stress field within the damage zone is decomposed into singular
and regular parts. This singular part with unknown cffective stress intensity factor is taken
from the asymptotic solution of a crack in an amsotropic material where anisotropy
corresponds to effective clastic properties of the cracked material. The regular part of ¢
is determined from the self-consistency equation.

{3) A new technique to evaluate the ERR associated with the damage vone translation
is presented. The ERR consists of two parts. The first part is represented by a path integral
similar to conventional J, integral. The sccond part s represented by an integral over the
D7 domain and depends on the geometry of the process zone and the statistical distribution
of microcrack density, length and orientation.

(4 The total ERR associated with translation of the dumage zone is characterized by
the microcrack density and length distributions. Computation of ERR for the particular
craze array indicates that the ERR due to damage zone advance is the same order of
magnitude as G5
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